Undulating bright ridges and dusty clouds cross this close-up of the nearby star forming region M8, also known as the Lagoon Nebula. A sharp, false-color composite of narrow band visible and broad band near-infrared data from the 8-meter Gemini South Telescope, the entire view spans about 20 light-years through a region of the nebula sometimes called the Southern Cliff. The highly detailed image explores the association of many newborn stars imbedded in the tips of the bright-rimmed clouds and Herbig-Haro objects. Abundant in star-forming regions, Herbig-Haro objects are produced as powerful jets emitted by young stars in the process of formation heat the surrounding clouds of gas and dust. The cosmic Lagoon is found some 5,000 light-years away toward the constellation Sagittarius and the center of our Milky Way Galaxy. (For location and scale, check out this image superimposing the close-up of the Southern Cliff within the larger Lagoon Nebula. The scale image is courtesy R. Barba’.)

Read More

China has successfully landed a spacecraft on Mars, state media announced early on Saturday.

The six-wheeled Zhurong robot was targeting Utopia Planitia, a vast terrain in the planet’s northern hemisphere.

The vehicle used a combination of a protective capsule, a parachute and a rocket platform to make the descent.

The successful touchdown is a remarkable achievement, given the difficult nature of the task.

Only the Americans have really mastered landing on Mars until now. With this landing, China becomes the second country to put a rover on Mars.

Read More

A gorgeous spiral galaxy, M104 is famous for its nearly edge-on profile featuring a broad ring of obscuring dust lanes. Seen in silhouette against an extensive central bulge of stars, the swath of cosmic dust lends a broad brimmed hat-like appearance to the galaxy suggesting a more popular moniker, the Sombrero Galaxy. This sharp optical view of the well-known galaxy made from ground-based image data was processed to preserve details often lost in overwhelming glare of M104’s bright central bulge. Also known as NGC 4594, the Sombrero galaxy can be seen across the spectrum, and is host to a central supermassive black hole. About 50,000 light-years across and 28 million light-years away, M104 is one of the largest galaxies at the southern edge of the Virgo Galaxy Cluster. Still the colorful spiky foreground stars in this field of view lie well within our own Milky Way galaxy.

Read More

Jupiter in ultraviolet, Hubble.

Closest to the Sun on March 1, and closest to planet Earth on April 23, this Comet ATLAS (C/2020 R4) shows a faint greenish coma and short tail in this pretty, telescopic field of view. Captured at its position on May 5, the comet was within the boundaries of northern constellation Canes Venatici (the Hunting Dogs), and near the line-of-sight to intriguing background galaxies popularly known as the Whale and the Hockey Stick. Cetacean in appearance but Milky Way sized, NGC 4631 is a spiral galaxy seen edge-on at the top right, some 25 million light-years away. NGC 46567 sports the bent-stick shape of interacting galaxies below and left of NGC 4631. In fact, the distortions and mingling trails of gas detected at other wavelengths suggest the cosmic Whale and Hockey Stick have had close encounters with each other in their distant past. Outbound and only about 7 light-minutes from Earth this Comet ATLAS should revisit the inner solar system in just under 1,000 years.

Read More

Albert Einstein’s theory of general relativity has aced another test. Following nearly 3 decades of monitoring, researchers have detected a subtle shift in the orbit of the closest known star to the supermassive black hole at the center of the Milky Way—and the movement matches Einstein’s theory precisely.

The star, known as S2, follows an elliptical 16-year orbit. It made a close approach—within 20 billion kilometers—to our black hole, Sagittarius A, last year. If Isaac Newton’s classic description of gravity holds true, S2 should then continue along exactly the same path through space as on its previous orbit. But it didn’t.

Instead, it followed a slightly diverging path, the axis of its ellipse shifting slightly, a team using the European Southern Observatory’s Very Large Telescope reports today in Astronomy & Astrophysics. The phenomenon, known as Schwarzschild precession, would, in time, cause S2 to trace out a spirographlike flower pattern in space (as shown above)—as general relativity predicts.

As well as another stringent test of relativity, the researchers say their detailed tracking of S2 will allow them to study how much invisible material, including dark matter and smaller black holes, exists around Sagittarius A. And that could help them understand how such behemoths grow and evolve.

Read More

Stunning new images of Jupiter from Gemini North and the NASA/ESA Hubble Space Telescope showcase the planet at infrared, visible, and ultraviolet wavelengths of light. These views reveal details in atmospheric features such as the Great Red Spot, superstorms, and gargantuan cyclones stretching across the planet’s disk. Three interactive images allow you to compare observations of Jupiter at these different wavelengths and explore the gas giant’s clouds yourself!

Three striking new images of Jupiter show the stately gas giant at three different types of light — infrared, visible, and ultraviolet. The visible and ultraviolet views were captured by the Wide Field Camera 3 on the Hubble Space Telescope, while the infrared image comes from the Near-InfraRed Imager (NIRI) instrument at Gemini North in Hawaiʻi, the northern member of the international Gemini Observatory, a Program of NSF’s NOIRLab. All of the observations were taken simultaneously (at 15:41 Universal Time) on 11 January 2017.

These three portraits highlight the key advantage of multiwavelength astronomy: viewing planets and other astronomical objects at different wavelengths of light allows scientists to glean otherwise unavailable insights. In the case of Jupiter, the planet has a vastly different appearance in the infrared, visible, and ultraviolet observations. The planet’s Great Red Spot — the famous persistent storm system large enough to swallow the Earth whole — is a prominent feature of the visible and ultraviolet images, but it is almost invisible at infrared wavelengths. Jupiter’s counter-rotating bands of clouds, on the contrary, are clearly visible in all three views.

Read More

Galaxy cluster MACS J0416.(i.redd.it)

With rubble from an asteroid tucked inside, a NASA spacecraft fired its engines and began the long journey back to Earth on Monday, leaving the ancient space rock in its rearview mirror.

The trip home for the robotic prospector, Osiris-Rex, will take two years.

Osiris-Rex reached asteroid Bennu in 2018 and spent two years flying near and around it, before collecting rubble from the surface last fall.

The University of Arizona’s Dante Lauretta, the principal scientist, estimates the spacecraft holds between a half pound and 1 pound (200 grams and 400 grams) of mostly bite-size chunks. Either way, it easily exceeds the target of at least 2 ounces (60 grams).

It will be the biggest cosmic haul for the U.S. since the Apollo moon rocks. While NASA has returned comet dust and solar wind samples, this is the first time it’s gone after pieces of an asteroid. Japan has accomplished it twice, but in tiny amounts.

Read More

NASA Administrator Sen. Bill Nelson released the following statement Saturday regarding debris from the Chinese Long March 5B rocket:

“Spacefaring nations must minimize the risks to people and property on Earth of re-entries of space objects and maximize transparency regarding those operations.

“It is clear that China is failing to meet responsible standards regarding their space debris.

“It is critical that China and all spacefaring nations and commercial entities act responsibly and transparently in space to ensure the safety, stability, security, and long-term sustainability of outer space activities.”

Read More

Voyager 1—one of two sibling NASA spacecraft launched 44 years ago and now the most distant human-made object in space—still works and zooms toward infinity.

Saturn’s Moon Enceladus Vents Into Space | NASA/JPL Caltech, Michael Benson, Kinetikon Pictures.

On Thursday I came across this article, which discusses the peer-reviewed journal article, “Fungi on Mars? Evidence of Growth and Behavior From Sequential Images”. As its pictures seemed to me to suggest fungal life active now on Mars, I tweeted “big news!” Over the next few days it got some quite negative news coverage, mainly complaining that the first author (out of 11 authors) had no prestigious affiliation and expressed other contrarian opinions, and also that the journal charged fees to authors.

I took two small supportive bets and then several people offered me much larger bets, while no one at all offered to bet on my side. That is a big classic clue that you are likely wrong, and so I am for now backing down on my likelihood estimates on this. And thus not (yet) accepting more bets. But to promote social information aggregation, let me try to explain the situation as I now see it. I’ll then listen to your reactions before deciding how to revise my estimates.

First, our priors are that early Mars and early Earth were nearly equally likely as places for life to arise, with Mars being habitable sooner. The rates at which life would have been transferred between the two places look high, though sixty times higher from Mars to Earth than from vice versa. Thus it seems nearly as likely that life started on Mars and then came to Earth, as that life started on Earth. And more likely than not, there was once some life on Mars.

Furthermore, studies that put today’s Earth life in Martian conditions find many that would survive and grow on Mars. So the only question is whether that sort of life ever arose on Mars, or was ever transferred from Earth to Mars. Yes, most of the Martian surface looks quite dead now, including most everything we’ve seen up close due to landers and rovers. But then so does most of the surface of Antartica look dead, but we know is it not all dead. So the chance of life somewhere on Mars now is pretty high; the question is just how common might be the few special places in which Martian life survives.

Read More

Omega Centauri, the largest globular cluster in the Milky Way.

The dark Horsehead Nebula and the glowing Orion Nebula are contrasting cosmic vistas. Adrift 1,500 light-years away in one of the night sky’s most recognizable constellations, they appear in opposite corners of the above stunning mosaic. The familiar Horsehead nebula appears as a dark cloud, a small silhouette notched against the long red glow at the lower left. Alnitak is the easternmost star in Orion’s belt and is seen as the brightest star to the left of the Horsehead. Below Alnitak is the Flame Nebula, with clouds of bright emission and dramatic dark dust lanes. The magnificent emission region, the Orion Nebula (aka M42), lies at the upper right. Immediately to its left is a prominent reflection nebula sometimes called the Running Man. Pervasive tendrils of glowing hydrogen gas are easily traced throughout the region.

Read More

NGC 3199 lies about 12,000 light-years away, a glowing cosmic cloud in the nautical southern constellation of Carina. The nebula is about 75 light-years across in this narrowband, false-color view. Though the deep image reveals a more or less complete bubble shape, it does look very lopsided with a much brighter edge along the top. Near the center is a Wolf-Rayet star, a massive, hot, short-lived star that generates an intense stellar wind. In fact, Wolf-Rayet stars are known to create nebulae with interesting shapes as their powerful winds sweep up surrounding interstellar material. In this case, the bright edge was thought to indicate a bow shock produced as the star plowed through a uniform medium, like a boat through water. But measurements have shown the star is not really moving directly toward the bright edge. So a more likely explanation is that the material surrounding the star is not uniform, but clumped and denser near the bright edge of windblown NGC 3199.

Read More

NASA’s selection of SpaceX’s Starship within the Human Lander System (HLS) program was both surprising and exciting for space nerds all over.

Previously I have written about how Starship’s ambitious approach could transform the Artemis Program, particularly since Starship’s excessive cargo payload capacity creates a lot of opportunities that were previously curtailed by the harsh reality of razor thin Lunar mass budgets

Jeff Bezos’ Blue Origin will send its first crew to space on July 20 and is offering one of the seats to the winner of an online auction, the company said Wednesday.

That’s no sunspot. It’s the International Space Station (ISS) caught passing in front of the Sun. Sunspots, individually, have a dark central umbra, a lighter surrounding penumbra, and no Dragon capsules attached. By contrast, the ISS is a complex and multi-spired mechanism, one of the largest and most complicated spacecraft ever created by humanity. Also, sunspots circle the Sun, whereas the ISS orbits the Earth. Transiting the Sun is not very unusual for the ISS, which orbits the Earth about every 90 minutes, but getting one’s location, timing and equipment just right for a great image is rare. The featured picture combined three images all taken from the same location and at nearly the same time. One image – overexposed – captured the faint prominences seen across the top of the Sun, a second image – underexposed – captured the complex texture of the Sun’s chromosphere, while the third image – the hardest to get – captured the space station as it shot across the Sun in a fraction of a second. Close inspection of the space station’s silhouette even reveals a docked Dragon Crew capsule.

Read More

The Butterfly Nebula.

A large piece of space debris, possibly weighing several tonnes, is currently on an uncontrolled reentry phase (that’s space speak for “out of control”), and parts of it are expected to crash down to Earth over the next few weeks.

If that isn’t worrying enough, it is impossible to predict exactly where the pieces that don’t burn up in the atmosphere might land. Given the object’s orbit, the possible landing points are anywhere in a band of latitudes “a little farther north than New York, Madrid and Beijing and as far south as southern Chile and Wellington, New Zealand”.

Read More
Space

A community for sharing and discussing news, pictures and videos about space.

Created on Jun 12, 2020
By @gurlic